Nanocatalysts and their Applications

Researchers at the University of Houston have demonstrated the use of cobalt oxide nanoparticles as a photocatalyst to produce hydrogen and oxygen gas from water using visible light. More work needs to be done, both to increase the energy efficiency and the lifespan of the nanoparticles, before this catalyst is commercially feasible.

Using gold nanoparticles embedded in a porous manganese oxide as a room temperature catalyst to breakdown volatile organic compounds in air.

Using a nanocatalyst containing cobalt and platinum to remove nitrogen oxide from smokestacks .

Reducing the amount of platinum used in catalytic converters.

Researchers at Ulsan National Institute of Science and Technology have demonstrated how to produce edge-halogenated graphene nanoplatelets that have good catalytic properties. The researchers prepared the nanoplatelets by ball-milling graphene flakes in the presence of chlorine, bromine or iodine. They believe these halogenated nanoplatelets could be used as a replacement for expensive platinum catalystic material in fuel cells.

Researchers at Cornell University have developed a catalyst using platinum-cobalt nanoparticles that produces 12 times more catalytic activity than pure platinum. In order to achieve this performance the researchers annealed the nanoparticles so they formed a crystalline lattice which reduced the spacing between platinum atoms on the surface, increasing their reactivity.

Researchers at the University of Copenhagen have demonstrated the ability to significantly reduce the amount of platinum needed as a catalyst in fuel cells.  The researchers found that the spacing between platinum nanoparticles affected the catalytic behavior, and that by controlling the packing density of the platinum nanoparticles they could reduce the amount of platinum needed.

Researchers at Brown University are developing a catalyst that uses no platinum. The catalyst is made from a sheet of graphene coated with cobalt nanoparticles. If this catalyst works out for production use with fuel cells it should be much less expensive than platinum based catalysts.

Researchers at Stony Brook University have demonstrated that gold nanoparticles can be very effective at using solar energy to generate hydrogen from water. The key is making the nanoparticles very small. They found that  nanoparticles containing less than a dozen gold atoms are very effective photocatalysts for the generation of hydrogen.

Researchers at the SLAC National Accelerator Laboratory have developed a way to use less platinum for the cathode in a fuel cell, which could significantly reduce the cost of fuel cells. They alloyed platinum with copper and then removed the copper from the surface of the film, which caused the platinum atoms to move closer to each other (reducing the lattice space). It turns out that platinum with reduced lattice spacing is more a more effective catalyst for breaking up oxygen molecules into oxygen ion. The difference is that the reduced spacing changes the electronic structure of the platinum atoms so that the separated oxygen ions more easily released, and allowed to react with the hydrogen ions passing through the proton exchange membrane.

Another way to reduce the use of platinum for catalyst in fuel cell cathodes is being developed by researchers at Brown University. They deposited a one nanometer thick layer of platinum and iron on spherical nanoparticles of palladium. In laboratory scale testing they found that an catalyst made with these nanoparticles generated 12 times more current than a catalyst using pure platinum, and lasted ten times longer. The researchers believe that the improvement is due to a more efficient transfer of electrons than in standard catalysts.

 

 

 

 

 

About Us     Contact Us     Link to Us     Advertise     Terms of Use     Privacy Policy     Site Map